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LONG-TERM GOAL: 

The long-term goal of this project is to improve our ability to understand and predict meteorological 
conditions in the coastal marine atmospheric boundary layer. 

OBJECTIVE: 

The objective of this project is to investigate the dynamics of coastal marine atmospheric boundary layer 
winds including the generation and propagation of coastal-trapped disturbances and their interaction with 
coastal orography and with orographically-modified ambient winds. 

APPROACH: 

The approach taken in this project is to obtain analytical and numerical solutions of idealized mathematical 
models of the marine atmospheric boundary layer and to compare these solutions to observations and to 
results from more complex models. 

WORK COMPLETED: 

Numerical and analytical models have been developed and analyzed to study the dynamics of linear and 
nonlinear coastal-trapped disturbances. 

The generation, propagation, and decay of forced linear and nonlinear coastal-trapped disturbances has been 
studied within a shallow-water framework (Rogerson and Samelson, 1995; Samelson and Rogerson, 1996; 
Rogerson, 1999b). The vertical structure of linear coastal-trapped disturbances was analyzed for models with 
continuous and two-layer stratification (Samelson, 1999). 

Numerical model solutions of hydraulically supercritical and subcritical shallow-water flows have been 
computed for domains with irregular coastline geometry using modem numerical techniques. The nonlinear 
interaction of coastal-trapped disturbances and transcritical steady-state flows has been analyzed (Rogerson, 
1999a). Hydraulically transcritical model flows have been computed for comparison with observational data 
from the 1996 Coastal Waves Experiment along the California coast. 

Mesoscale simulations of the interaction of continuously stratified, hydraulically supercritical and transcritical 
flow with coastal orography have been carried out and analyzed, yielding new insight into the dynamics of 
coastal winds (Burket al., 1999). 
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This grant has also provided partial support for studies of the coastal ocean response to wind forcing 
(Samelson, 1997), for a theoretical and numerical investigation of Lagrangian transport in a meandering jet 
(Rogerson et al., 1999; Lozier et al., 1997; Miller et al., 1997), and for a numerical study of planetary 
geostrophic ocean circulation (Samelson, 1998). 

RESULTS: 

Results from the forced linear shallow-water model reveal that the coastal-trapped disturbance has several 
distinct phases and components (Rogerson and Samelson, 1995; Samelson and Rogerson, 1996). Initially, the 
marine layer thickness at the coast responds to convergence of ageostrophic cross-shore flow near the center 
of the low-pressure forcing, and to geostrophic cross-shore convergence and divergence to the south and 
north, respectively, with little indication of propagation. As the forcing moves away from the coast, the 
disturbance resembles a damped Kelvin wave. The superposition of cross-shore propagating forcing and the 
northward-propagating disturbance can give rise to surface pressure ridges at the coast with both narrow and 
broad cross-shore extent. The alongshore length scale of the disturbance depends on the propagation speed 
of the forcing, and may appear more mesoscale-like for fast-moving pressure systems. The results from the 
linear forced model agree qualitatively with many aspects of observed coastal-trapped wind-reversal events. 

Results from the forced nonlinear model demonstrate that the nonlinear response to different time-dependent 
forcing scenarios can produce coastal-trapped disturbances that display a wide variety of characteristic features 
(Rogerson, 1999b). In addition to the expected steepening of the leading edge of the disturbance wave, the 
nonlinear dynamics include enhanced dissipation when the marine layer thickness is small, resulting in a 
disturbance that quickly evolves into a wave of elevation only. The alongshore and cross-shore structure of 
the response are affected by time-dependent variations in the forcing, which in turn influence the propagation 
speed of the freely-propagating disturbance. As a result, the profile of the disturbance can differ significantly 
from the "typical" nonlinear Kelvin wave profile. 

The analysis of the vertical structure of coastal-trapped disturbances has shown that the presence of a stable 
layer above the boundary layer inversion increases the gravest mode phase speed and supports the existence 
of higher modes (Samelson, 1999). Results from the two-layer study suggest that the observed vertical 
structure of isotherms at the leading edge of the 10-11 June 1994 event may arise during a transition from a 
directly forced, barotropic, alongshore velocity response to a regime dominated by wave propagation, as 
coastal-trapped vertical modes excited by mesoscale pressure gradients begin to disperse at their respective 
phase speeds. 

The numerical investigation of hydraulically transcritical shallow-water model flows has described the spatial 
structure of steady-state flows corresponding to different levels of constant pressure-gradient forcing, and the 
interaction of coastal-trapped disturbances with the steady base flows (Rogerson, 1999a). The steady-state 
flows are hydraulically supercritical in the region where the coastline geometry is irregular, but are subcritical 
offshore and where the coastline is straight. In the supercritical region, the flow exhibits expansion fans and 
compression jumps at convex and concave coastline bends, respectively. Perturbations in the marine layer that 
originate in a subcritical region can propagate northward as coastal-trapped waves, relaxing or reversing the 
alongshore northerly winds, but can be halted near coastline bends by supercritical flow conditions. The 
interaction of strong coastal-trapped disturbances with supercritical regions of the flow is accompanied by an 
eddy-generation process that resembles satellite images of stratus during the observed May 1982 coastal- 
trapped event off California (Figure 1). 
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Figure 1: Interaction of a coastal-trapped disturbance with a transcritical base flow. [1st row] Velocity vectors 
and contours of wind speed; [2nd row] contours of layer thickness and region of criticality (delineated by the 
thick line); [3rd row] contours of potential vorticity. (From Rogerson (1999a).) 

Numerical solutions of a nonlinear shallow-water model are being utilized to aid the dynamical interpretation 
of aircraft observations from the 1996 Coastal Waves field experiment in the vicinity of Cape Mendocino. 
The modeling study indicates that the flow downstream of the Cape is supercritical even when the upstream 
winds are only moderately strong, resulting in acceleration of the wind and a decrease in inversion height 
south of the Cape. The effect can be strong enough to cause flow separation in the vicinity of Shelter Cove, 
which is consistent with observations of weak winds nearshore within the Cove concomitant with very strong 
winds further offshore. This work is being conducted in collaboration with K. Edwards and C Winant of the 
Scripps Institution of Oceanography. 

Mesoscale atmospheric model simulations of the interaction of stratified hydraulically supercritical and 
transcritical flow with coastal orography revealed horizontal structure similar to that found previously in 
observations and in shallow-water models of supercritical and transcritical flow along a varying coastline (Burk 
et al., 1999). However, a significant response in the stratified flow above the marine atmospheric boundary 
layer inversion was also observed in the simulations, a feature that is not represented in the simpler shallow- 
water case. Analysis of these simulations in terms of a shallow-water similarity theory implicated the vertical 
shear, rather than the stratification, as the dominant vertical trapping mechanism, giving new insight into 
previous shallow-water theories of this phenomenon. This work was conducted jointly with S. Burk and T 
Haack at the Naval Research Laboratory, Monterey, using the mesoscale atmospheric model COAMPS. 
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Numerical solutions of a multi-layer primitive equation model with idealized topography, forced by fields 
derived from the NCEP Eta analysis during 9-12 June 1994, have been obtained to investigate the dynamics 
of the observed 10-11 June 1994 coastal-trapped disturbance. The results indicate the presence of both 
directly forced and propagating-wave components in the response, and suggest that leakage of low-level 
marine air over the coastal orography may limit the amplitude of the trapped response. 

Analysis of the wind-forced response of a two-layer coastal ocean model in the 2-7 day period band and 
comparison with CODE observations gave new insights into inner-shelf dynamics (Samelson, 1997). In this 
model, the upper layer represented a surface wind-mixed layer. For the alongshore velocity gain relative to 
local wind stress, an onshore surface maximum and an offshore interior maximum were robustly reproduced 
by the model. These features are evidently related to a dynamical transition over the inner half of the 
northern California shelf, in which the alongshore wind stress is balanced more by acceleration of near-surface 
alongshore flow, and less by time-dependent Ekman transport as the coast is approached. This differs from a 
previous hypothesis, based on a linear model in which the turbulent stress was confined to infinitesimally thin 
surface and bottom boundary layers, which related the alongshore flow structure to cross-shore variations in 
the alongshore wind amplitude. These results emphasize that the analysis of inner-shelf ocean dynamics 
depends on accurate knowledge of the wind stress over the inner shelf. 

The investigation of Lagrangian transport in a numerically-modeled meandering jet has shown that there is 
significant fluid exchange between the model jet and its surroundings due to the temporal variability of the 
flow (Rogerson et al., 1999; Lozier et al., 1997; Miller et äl., 1997). The analysis demonstrated the application 
of dynamical systems techniques to a model flow that is aperiodic and available only over a finite time, and 
revealed the geometrical structures that demarcate regions of strong fluid filamentation and possible mixing 
(Figure 2). When the results are applied to the Gulf Stream, the fluid exchange occurring along the flanges of 
the jet is comparable to the transport associated with the detachment of Gulf Stream rings. 
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Figure 2: Potential vorticity contours (dashed lines) on the northern side of a meandering jet and geometrical structures 
(solid lines) that demarcate blobs of fluid (colored) that undergo strong filamentation. (Adapted from Rogerson et al., 
(1999).) 



ONR-322MM 5 Award #N00014-93-1-1369 

The planetary geostrophic calculations indicate that intense boundary mixing over broad areas is necessary to 
support deep stratification comparable to observed values in a single-hemisphere, closed-basin model 
(Samelson, 1998), but can be achieved with uniformly small diffusivity in a channel geometry if friction is also 
small. The circulation induced by the localized mixing, with warming and upwelling in the mixing region of 
cold fluid that enters the abyss from a single dense source, appears broadly consistent with recent estimates 
from of mixing and circulation of Antarctic Bottom Water in the Brazil Basin. 

IMPACT/APPLICATIONS: 

Results from this theoretical and numerical modeling effort will contribute to the overall goal of improving 
weather prediction models through enhanced understanding of the dynamics that control coastal 
meteorological conditions. 

TRANSITIONS: 

RELATED PROJECTS: 

This work is part of the ONR Coastal Meteorology ARI (Nuss et al., 1999). 
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